Tuesday, December 16, 2008


"Pure NAT", operating on IP alone, may or may not correctly parse protocols that are totally concerned with IP information, such as ICMP, depending on whether the payload is interpreted by a host on the "inside" or "outside" of translation. As soon as the protocol stack is climbed, even with such basic protocols such TCP and UDP, the protocols will break unless NAT takes action beyond the network layer.
IP has a checksum in each packet header, which provides error detection only for the header. IP datagrams may become fragmented and it is necessary for a NAT to reassemble these fragments to allow correct recalculation of higher level checksums and correct tracking of which packets belong to which connection.
The major transport layer protocols, TCP and UDP, have a checksum that covers all the data they carry, as well as the TCP/UDP header, plus a "pseudo-header" that contains the source and destination IP addresses of the packet carrying the TCP/UDP header. For an originating NAT to successfully pass TCP or UDP, it must recompute the TCP/UDP header checksum based on the translated IP addresses, not the original ones, and put that checksum into the TCP/UDP header of the first packet of the fragmented set of packets. The receiving NAT must recompute the IP checksum on every packet it passes to the destination host, and also recognize and recompute the TCP/UDP header using the retranslated addresses and pseudo-header. This is not a completely solved problem. One solution is for the receiving NAT to reassemble the entire segment and then recompute a checksum calculated across all packets.
It may be wise for the originating host to do MTU Path Discovery (RFC 1191) to determine what MTU will go to the end without fragmentation, and then set the "don't fragment" bit in the appropriate packets. There is no totally general solution to this problem, which is why one of the goals of IPv6 is to avoid NAT.

No comments:

Post a Comment

Pilih Siaran radio anda



klik "STOP" untuk hentikan siaran radio. Semoga terhibur.